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A perturbation method is presented to analytically calculate eigensolutions of the
two-dimensional wave equation when asymmetric perturbations are present in the
boundary conditions. The unique feature of the method is that the sequence of boundary
value problems governing the eigensolution perturbations are solved exactly through fifth
order perturbation. Two classes of asymmetry are considered: irregular domain shapes that
cannot be treated by analytical means, and variation of the boundary conditions along the
boundary. The unperturbed eigensolutions are those for an annular domain with
axisymmetric boundary conditions. Irregularly shaped domains are studied in detail to
demonstrate the method and the accuracy of the results, which are compared with exact
values for the elliptical and rectangular domain cases. The results show excellent agreement
with these known solutions for large shape distortions, an achievement resulting from the
extension to higher order perturbation. Fourier representation of the boundary
asymmetries allows analysis of arbitrary distributions of asymmetry. Additionally, the exact
perturbation solution retains the explicit parameter dependence of continuous system
analysis, generates simple expressions for the perturbed eigensolutions, addresses all
distinct and degenerate axisymmetric system eigensolutions, and requires minimal
computation and programming.
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1. INTRODUCTION

The wave equation

−92q+ qtt = f (x, y, t), P�; q+ bqn =0, 1P�; (1)

is arguably the most widely-studied differential equation in science and engineering. It is
used to model physical systems in diverse fields such as acoustics, wave propagation,
vibration, electromagnetics, fluid mechanics, heat transfer, and diffusion. Eigensolutions
of the two-dimensional wave equation, governed by the Helmholtz equation, are the focus
of this paper. A perturbation method is presented to analytically calculate eigensolutions
when asymmetric perturbations are present in the boundary conditions. The axisymmetric,
annular domain case serves as the unperturbed problem. Possible boundary condition
perturbations include deviation of the domain P� from annular and variation of the
parameter b along the boundary 1P�. The eigensolution perturbations are determined
exactly, and their algebraic simplicity allows extension of the perturbation through fifth
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order. Both distinct and degenerate eigenvalues of the unperturbed problem are examined.
Boundary condition asymmetry splits the degenerate unperturbed eigenvalues. Simple
rules are derived predicting this splitting at both first and second orders of perturbation.
To illustrate the method and quantify its accuracy, the case of domain shape perturbation
from circular is addressed in detail and comparisons are made with the exact solutions for
elliptical and rectangular domains.

Methods used to analyze eigensolutions of the wave equation on irregular domains have
been primarily numerical; for example finite element, finite difference and others. In
addition to an extensive summary of theoretical results, Kuttler and Sigillito [1] provide
a comprehensive review (142 references) of the application of these and other less popular
methods. Mazumdar also reviews approximate methods invoked for this problem [2–4].
The above methods can be augmented by conformally mapping the irregular domain to
a circle [5]. In the spirit of perturbation, Joseph [6] employed a parameter differentiation
method to obtain derivatives of the distinct eigenvalues as the domain changes. The
requirement of a smooth mapping function from the unperturbed domain to the irregular
one and the restriction to distinct eigenvalues of the unperturbed problem limit its
applicability. By assuming expressions for the lines of constant deflection in the
fundamental eigenfunction, Mazumdar obtained estimates for the fundamental eigenvalue
for arbitrarily shaped domains [7]. Accuracy of this method depends on the availability
of a good estimate of the lines of constant deflection. Morse and Feshbach [8] used a
perturbation analysis different from that presented herein to study the Helmholtz equation
on irregular domains. Expansion of the eigenfunction perturbations in infinite series of the
unperturbed eigenfunctions leads to a convergence problem restricting the analysis to
second order perturbation in the eigenvalue and first order in the eigenfunction. Nayfeh
used a perturbation formulation similar to that of this work to calculate the eigenvalue
perturbation to first order; no eigenfunction perturbations are presented [9]. This work
draws on the results of Parker and Mote [10, 11], where a formal procedure for obtaining
exact eigensolution perturbations is developed.

2. EIGENSOLUTION PERTURBATION FORMULATION

The eigenvalue problem resulting from separation of the spatial and temporal
dependence in equation (1) by the assumption q= p(R, u) eiVt is

−92p−V2p=0, P�; p+ bpn =0, 1P�: 1P�i j1P�o ; (2a, b)

where subscript n denotes the normal derivative. Two classes of asymmetry are examined
that normally preclude exact determination of the exact solution to (2): irregular P� and
variation of b along 1P�. These asymmetries are treated as perturbations of the
axisymmetric, annular domain eigenvalue problem.

2.1.   

The two-dimensional, doubly-connected domain P� in Figure 1 is P� : Ri (u)Q
RQRo (u), 0E uQ 2p. The deviations of the boundaries 1P�i and 1P�o from circular are

oḡi (u)0Ri (u)−R�i , oḡo (u)0Ro (u)−R�o , (3)

where R�i and R�o are the average radii of the inner and outer boundaries. The variables
q, p, and t in equations (1) and (2) are dimensionless; scaling the domain with the
additional dimensionless variables
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Figure 1. The irregular domain is denoted by the solid lines, and the annular domain for perturbation by the
dashed lines. The radii of the dashed circles equal the average radii of the irregular bounding curves.

r=
R
R�o

; g=
R�i

R�o
, v̄=R�o V, ogo (u)=

oḡo (u)
R�o

, ogi (u)=
oḡi (u)

R�o
(4)

yields the eigenvalue problem for constant b= bo

−92p− v̄2p=0, P
 ; p+ bo pn =0, 1P
 ; (5a, b)

where P
 : g+ ogi (u)Q rQ 1+ ogo (u), 0E uQ 2p.
Boundary quantities on 1P
 are approximated by Taylor series expansion about r= g, 1.

For example,

p =r=1+ ogo = p =r=1 + (ogo )pr =r=1 +1/2!(ogo )2prr =r=1 +1/3!(ogo )3prrr =r=1 + · · · . (6)

A similar expansion is developed for p =1P
 i . The expansions pn =1P
 i ,o require asymptotic
expansion of pn in terms of derivatives with respect to the polar co-ordinates r and u [12].
Introduction of the expansions for p and pn on 1P
 into equation (5b) yields

−92p− v̄2p=0, P : gE rQ 1, 0E uQ 2p, (7a)

(p− bo pr )+ oC�p+ o2D�p+ o3E�p+· · ·=0, r= g, (7b)

(p+ bo pr )+ oC
 p+ o2D
 p + o3E
 p +· · ·=0, r=1, (7c)

where C�, D�, C
 , D
 , . . . are linear boundary operators with variable coefficients depending
on gi (u) and go (u).

2.2.  b  1P

For annular domains with b:bo + ob(u), the eigenvalue problem becomes

−92p− v̄2p=0, P : gE rQ 1, 0E uQ 2p, (8a)

(p− bo pr )− ob(u)pr =(p− bo pr )+ oC�p=0, r= g, (8b)

(p+ bo pr )+ ob(u)pr =(p+ bo pr )+ oC
 p =0, r=1, (8c)

which is of form identical to equation (7).
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Eigensolutions of equation (7) are sought where the boundary perturbations may result
from either or both of the asymmetries discussed above. The eigensolutions are represented
as asymptotic series in the small parameter o:

v̄2 =v2 + om+ o2h+ o3k+ o4x+ o5s+O(o6), (9)

p= u+ ov+ o2w+ o3s+ o4t+ o5z+O(o6). (10)

Subsequent analysis shows that confinement of the perturbation terms to the boundary
conditions ensures that the Bessel and trigonometric forms of the eigenfunction
perturbations in equation (10) do not depend on the boundary perturbations. Only the
coefficients of these Bessel and trigonometric functions depend on the boundary condition
operators. Because of this essential point, the method presented in the sequel for finding
exact solutions for the eigensolution perturbations on irregular domains can be readily
applied to find exact eigensolution perturbations for any problem of the form (7).

With the inner product �e, f �= ffP ef dA, the normalization �p, p�=1 and equation
(10) give

�u, v�=0, �u, w�=−1
2 �v, v�, �u, s�=−�v, w�, �u, t�=−�v, s�− 1

2 �w, w�,

(11)

The eigenvalue perturbations m, h, k, x, and s are determined subsequently in terms of
the boundary conjunct J(e, f):

J(e, f)= �−92e, f �− �e, −92f �=g1P

[efn − fen ] dŝ. (12)

3. IRREGULAR DOMAIN EIGENSOLUTION PERTURBATION

The solution procedure for eigenvalue problems of the form (7) is demonstrated by
examining an irregularly shaped domain with outer boundary 1P� and boundary condition
p =1P� =0. Use of equations (4) and (6) yields

−92p− v̄2p=0, P : 0E rQ 1, 0E uQ 2p, (13a)

p+ ogpr +1/2!(og)2prr +1/3!(og)3prrr +1/4!(og)4prrrr +1/5!(og)5prrrrr =0, r=1, (13b)

where the subscript o denoting the outer boundary has been omitted. Substitution of
equations (9, 10) into equation (13) yields the sequence of perturbation problems

−92u−v2u=0, P; u=0, 1P, (14a, b)

−92v−v2v= mu, P; v=−gur , 1P; (15a, b)

−92w−v2w= mv+ hu, P; w=−gvr −(1
2)g

2urr , 1P; (16a, b)

−92s−v2s= mw+ hv+ ku, P; s=−gwr −(1
2)g

2vrr −(1
6)g

3urrr , 1P; (17a, b)

−92t−v2t= ms+ hw+ kv+ xu, P; (18a)

t=−gsr −(1
2)g

2wrr −(1
6)g

3vrrr −( 1
24)g

4urrr , 1P; (18b)

−92z−v2z= mt+ hs+ kw+ xv+ su, P; (19a)

z=−gtr −(1
2)g

2srr −(1/6)g3wrrr −( 1
24)g

4vrrrr −( 1
120)g

5urrrrr , 1P. (19b)

Solution of equation (14) gives the orthonormal unperturbed eigenfunctions

um0 = (1/p1/2) J0 (vm0 r)/J1 (vm0)=Rm0 (r), me 0; (20)
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uc,s
mn =02p1

1/2 Jn (vmn r)
Jn+1 (vmn ) 6cos nu

sin nu
=Rmn (r)6cos nu

sin nu
, me 0, nq 0; (21)

where m and n denote the number of nodal circles and nodal diameters in the
eigenfunction. The unperturbed eigenvalue vmn is the (m+1)th root of the characteristic
equation Jn (v)=0. vmn is a distinct eigenvalue for n=0 and a degenerate eigenvalue of
multiplicity two for ne 1. ucs

mn are orthonormal eigenfunctions associated with the
degenerate eigenvalues.

For the circular domain P, the boundary conjunct (12) is

J(e, f )=g
2p

0

[efr − fer ]r=1 du. (22)

The following relations are used subsequently:

R'm0 (1)=−
vm0

p1/2 , R0m0 (1)=
vm0

p1/2 , R'mn (1)=−02p1
1/2

vmn ,

R0mn (1)=02p1
1/2

vmn , (23)

g(u)= s
a

j=1

gc
j cos ju+ s

a

j=1

gs
j sin ju, (24)

G(u)= g2(u)=G0 + s
a

j=1

Gc
j cos ju+ s

a

j=1

Gs
j sin ju. (25)

Use of the Fourier representation (24) allows treatment of arbitrary boundary shapes,
including kinked or discontinuous boundaries. The constant term in equation (24) vanishes
because R� is the average radius of the boundary.

4. SOLUTION OF PERTURBATION EQUATIONS

4.1.   

Consider perturbation of a distinct unperturbed eigensolution (vm0, um0) (the subscript
m0 will be omitted in the sequel). Using solvability conditions for the perturbation
problems (15–19), Parker and Mote have presented formal expressions for the distinct
eigenvalue perturbations in terms of the boundary conjunct [10, 11]:

m=−J(u, v), h=−J(u, w), k=−m�u, w�− J(u, s),

x=−m�u, s�− h�u, w�− J(u, t), s=−m�u, t�− h�u, s�− k�u, w�− J(u, z)

(26)

4.1.1. First order perturbation
The first order eigenvalue perturbation m is evaluated from equations (26a), (22), (14b),

(15b), (20), and (24):

m=g
2p

0

[ur v]r=1 du=−[R'0 (1)]2 g
2p

0

g du=0. (27)
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The result m=0 substantially simplifies subsequent calculations. It results because the
radius of the unperturbed circular domain is the mean radius of the irregular domain.

In their treatment of boundary shape perturbation of the Helmholtz equation, Morse
and Feshbach [8] noted convergence difficulties when the eigenfunction perturbation is
expanded in a series of the unperturbed eigenfunctions. For the similar case of plate
boundary shape perturbation, Parker and Mote [12] encountered a divergent series for the
second order eigenvalue perturbation when the first order eigenfunction perturbation is
expanded in a series of the unperturbed eigenfunctions. These problems do not occur when
the exact solution for the eigenfunction perturbation is determined. Furthermore, the exact
solution is more accurate, computationally efficient, and notationally convenient than the
infinite series expansion. In the sequel, exact eigenfunction perturbation solutions are
determined through fourth order perturbation, thereby allowing exact calculation of the
fifth order eigenvalue perturbation.

The eigenfunction perturbation v(r, u) is decomposed as

v= cu+ vh + vp. (28)

The first term results because u is a non-trivial solution of the homogeneous form of
equation (15a, b); c is a constant to be determined. The second term is the general solution
of the homogeneous form of equation (15a). The third term of equation (28) is a particular
solution of the inhomogeneous equation (15a). Because of equation (27),

vp =0. (29)

Additionally,

vh = s
a

j=1

Jj (vr) [Bj cos ju+Cj sin ju], (30)

where the j=0 term is omitted because its contribution is included in the first term of
equation (28). The coefficients in equation (30) are calculated from equation (15b):

Bj =vgc
j /p1/2Jj (v), Cj =vgs

j /p1/2Jj (v), (31)

where gc
j and gs

j are from equations (24). Substitution of equation (28) into the
normalization condition (11a) yields

c=−�u, vh + vp�=0 (32)

and the solution for v is complete.

4.1.2. Second order perturbation

The second order eigenvalue perturbation h is evaluated from equations (26b), (22),
(14b), (16b), (20), (28–32), (24), and (25):

h=g
2p

0

[ur (−gvr − 1
2 g2urr )]r=1 du=v26G0 + s

a

’j=1 $j−v
Jj+1 (v)
Jj (v) %(gc

j )2 + (gs
j )2%7 (33)

The solution of equation (16) is decomposed as

w= du+wh +wp (34)
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where the definitions of the terms in equation (34) are analogous to those in equation (28),
and

wp =−(hr/(4p)1/2v) J1 (vr)/J1 (v), wh = s
a

j=1

Jj (vr) [Ej cos ju+Fj sin ju]. (35, 36)

The coefficients Ej and Fj in equation (36) are determined from equation (16b):

Ej =−
v

(4p)1/2Jj (v) &Gc
j + s

a

m=1 $m−v
Jm+1 (v)
Jm (v) %

× 8g
c
m (gc

m+ j + gc
m− j )+ gs

m (gs
m+ j + gs

m− j )
gc

m (gc
m+ j + gc

j−m )+ gs
m (gs

m+ j − gs
j−m )

gc
m gc

2m + gs
m gs

2m

mq j
mQ j
m= j',

Fj =−
v

(4p)1/2Jj (v) &Gs
j + s

a

m=1 $m−v
Jm+1 (v)
Jm (v) %

× &g
c
m (gs

m+ j − gs
m− j )− gs

m (gc
m+ j − gc

m− j )
gc

m (gs
m+ j + gs

j−m )− gs
m (gc

m+ j − gc
j−m )

gc
m gs

2m − gs
m gc

2m

mq j
mQ j
m= j9.

From the normalization (11b),

d=−1
2 �v, v�− �u, wp�

=−
v2

2
s
a

m=1 $1−
2m
v

Jm+1 (v)
Jm (v)

+
J2

m+1 (v)
J2

m (v) %[(gc
m )2 + (gs

m )2]−
h

2v2. (37)

The particular solution (35) is the critical component of the solution (34). With wp known,
calculation of Ej and Fj is straightforward for any perturbed boundary conditions (7b, c).

Equations (27–37) provide exact, closed-form expressions for both the eigenvalue and
eigenfunction perturbations through second order. Their simplicity is remarkable given
that they apply for an arbitrary deviation in boundary shape.

4.1.3. Third order perturbation
The third order eigenvalue perturbation (26c) is

k=−J(u, s)=g
2p

0

[ur (−gwr − 1
2 g2vrr −(1

6)g
3urrr )]r=1 du. (38)

Derivation of a closed form expression for k is analogous to equation (33) and
straightforward. The value of the expression is minimal, however, because equation (38)
can be evaluated easily using computer algebra software for a specified g(u). Little insight
can be gained from the algebraic details at third order perturbation.
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The third order eigenfunction perturbation s(r, u) is

s= eu+ sh + sp. (39)

A particular solution for the ku term in equation (17a) is known by analogy with equation
(35):

sp
1 =−(kr/(4p)1/2v) (J1 (vr)/J1 (v)). (40)

A particular solution associated with the hn term of equation (17a) is

sp
2 =−

nr
2v

s
a

j=1

Jj+1 (vr) [Bj cos ju+Cj sin ju]. (41)

Finally,

sp = sp
1 + sp

2 . (42)

As in equations (30) and (36),

sh = s
a

j=1

Jj (vr) [Hj cos ju+Lj sin ju], (43)

where numerical evaluation of Hj and Lj for specified g(u) is readily achieved. e in equation
(39) is found from (11c)

e=−�v, w�− �u, sp�. (44)

4.1.4. Fourth order perturbation

The fourth order eigenvalue perturbation x is found from equation (26d):

x=−hd+ h2/2v2 − J(u, t). (45)

The fourth order eigenfunction perturbation t(r, u) is

t= fu+ th + tp. (46)

Expansion of equation (18a) yields

−92t−v2t=(x+ hd)u+ kvh + hwh + hwp, P. (47)

A particular solution of equation (47) is

tp = tp
1 + rp

2 + tp
3 + tp

4 , tp
1 =−

(x+ hd)r
(4p)1/2v

J1 (vr)
J1 (v),

(48, 49)

tp
2 =−

kr
2v

s
a

j=1

Jj+1 (vr) [Bj cos ju+Cj sin ju], (50)

tp
3 =−

hr
2v

s
a

j=1

Jj+1 (vr) [Ej cos ju+Fj sin ju], (51)

tp
4 =−

h2r
(64p)1/2v3J1 (v)

[vrJ0 (vr)−2J1 (v)], (52)
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where tp
4 is the only ‘‘new’’ particular solution not determined by analogy with previous

particular solutions. Coefficients of th are calculated from equation (18b). The
normalization (11d) gives

f=−1
2 �w, w�− �v, s�− �u, tp�. (53)

4.1.5. Fifth order perturbation

From equation (26e), the fifth order eigenvalue perturbation s is

s=−he− kd+ nk/v2 − J(u, z). (54)

4.2.   

Consider perturbation of a degenerate unperturbed eigenvalue vmn and the associated
n nodal diameter orthonormal eigenfunctions uc,s

mn (21) (the subscript mn will henceforth be
omitted). Because of the eigenvalue degeneracy, the unperturbed eigenfunction u is an
element in the linear space spanned by uc and us:

u= ac uc + as us; (55)

where ac and as are determined subsequently. The normalization �u, u�=1 requires

a2
c + a2

s =1. (56)

Boundary condition asymmetry splits the degenerate unperturbed eigenvalue and fixes the
coefficients ac and as in equation (55). These effects might occur at first order perturbation,
though, if not, they are predicted at some higher order perturbation.

Because uc and us are solutions of the homogeneous forms of equations (15–19), two
solvability conditions must be satisfied at each order of perturbation. The method of
Parker and Mote [10] is followed.

4.2.1. First order perturbation

The solvability conditions for equation (15) yield

ac m=−J(uc, v), as m=−J(us, v). (57)

Evaluation of equations (57) yields a symmetric, algebraic eigenvalue problem,

−v2$gc
2n

gs
2n

gs
2n

−gc
2n%6ac

as7= m6ac

as7:Da= ma,

m1,2 =2v2[(gc
2n )2 + (gs

2n )2]1/2. (58)

The eigenvalues of D are the first order perturbations of v. The eigenvectors of D fix the
coefficients in equation (55). The degenerate eigenvalue splits into distinct eigenvalues as
a result of boundary asymmetry if and only if the m are distinct. The magnitude of m for
an n nodal diameter eigenvalue is proportional to [(gc

2n )2 + (gs
2n )2]1/2. This leads to the

splitting rule: If either or both of gc
2n and gs

2n are non-zero, the n nodal diameter eigenvalues
split at first order perturbation; otherwise the eigenvalues remain degenerate. When no first
order splitting occurs, m=0 but ac and as remain undetermined.

The eigenfunction perturbation v(r, u) is decomposed as

v= cc uc + cs us + vh + vp, (59)
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where the first two terms result from the two independent solutions of the homogeneous
form of equation (15). Particular and homogeneous solutions of equation (15a) are

vp =(mr/(2p)1/2v)Jn+1 (vr)/Jn+1 (v)(ac cos nu+ as sin nu), (60)

vh = s
a

j=0, j$ n

Jj (vr) [Bj cos ju+Cj sin ju], (61)

where the j= n term of equation (61) is included in the first terms of equation (59). Using
equation (15b),

Bj =
v

(2p)1/2Jj (v) 8ac (gc
j+ n + gc

j− n )+ as (gs
j+ n − gs

j− n ),
ac (gc

j+ n + gc
n− j )+ as (gs

j+ n + gs
n− j ),

ac gc
n + as gs

n ,

jq n,
jQ n,
j=0,9 (62a)

Cj =
v

(2p)1/2Jj (v) 6ac (gs
j+ n + gs

j− n )− as (gc
j+ n − gc

j− n ),
ac(gs

j+ n − gs
n− j )− as (gc

j+ n − gc
n− j ),

jq n,
jQ n.7 (62b)

Coefficients cc and cs completing the solution (59) are calculated at second order
perturbation, just as ac and as of equation (55) are calculated at first order perturbation.

4.2.2. Second order perturbation

The two solvability conditions for (16) and (11a) yield

&m+v2gc
2n

v2gs
2n

v2ac

v2gs
2n

m−v2gc
2n

v2as

v2ac

v2as

0 '8 cc

cs

h/v29= 8[m
2(n+1)/2v2]ac − J	 (uc, w)

[m2(n+1)/2v2]as − J	 (us, w)
[m(n+1)/2] 9, (63)

J	 (uc, w)= J(uc, w) =cc = cs =0

= ac 6−mn
2

gc
2n −v2(G0 + 1

2 Gc
2n )−

v2

2
s
a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %aj 7

+ as 6−mn
2

gs
2n −v2(1

2 Gs
2n )−v2 s

a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %bj7= ac X+ as Y,

(64a)

J	 (us, w)= J(us, w) =cc = cs =0 = ac 6−mn
2

gs
2n −v2(1

2 Gs
2n )−v2 s

a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %bj7

+ as 6−mn
2

gc
2n −v2(G0 + 1

2 Gc
2n )−

v2

2
s
a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %Gj 7

= ac Y+ as Z, (64b)
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aj = 8(g
c
j+ n + gc

j− n )2 + (gs
j+ n + gs

j− n )2

(gc
j+ n + gc

n− j )2 + (gs
j+ n − gs

n− j )2

2(gc
n )2

, bj = 8−gc
j+ n gs

j− n + gc
j− n gs

j+ n ,
gc

j+ n gs
n− j + gc

n− j gs
j+ n ,

gc
n gs

n ,

jq n,
jQ n,
j=0,

Gj = 8(g
c
j+ n − gc

j− n )2 + (gs
j+ n − gs

j− n )2

(gc
j+ n − gc

n− j )2 + (gs
j+ n + gs

n− j )2

2(gs
n)2

, dj = 8g
c
j+ n gc

j− n + gs
j+ n gs

j− n ,
gc

j+ n gc
n− j − gs

j+ n gs
n− j ,

1
2 [(gc

n )2 − (gs
n )2],

jq n,
jQ n,
j=0

dj =(1
4) (aj −Gj ) is used in equation (66). The operator in equation (63) is invertible if and

only if the unperturbed eigenvalue splits at first order perturbation; cc , cs , and h are
calculable from equation (63). If gc

2n = gs
2n =0, then m=0, the operator in equation (63)

is singular, and ac and as are unknown. In this case, the component equations of equation
(63) yield

ac J	 (us, w)− as J	 (uc, w)=Y(a2
c − a2

s )+ (Z−X)ac as =0,

h=−ac J	 (uc, w)− as J	 (us, w)=−Xa2
c −2Yac as −Za2

s , (65)

where X, Y, and Z are defined in equation (64). The first of equations (65) and (56) can
be solved for two unique a=(ac as )T if and only if one or both of the following inequalities
hold:

Y$ 0:1
2 Gs

2n + s
a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %bj $ 0,

X$Z:1
2 Gs

2n + s
a

j=0, j$ n $j−v
Jj+1 (v)
Jj (v) %dj $ 0; (66)

h is then calculated from equation (65b). Equations (66) are second order eigenvalue
splitting rules: if either or both of equations (66) are satisfied, the n nodal diameter
eigenvalues split at second order; otherwise they do not. When Y=0 and X=Z,
equations (65b) and (56) yield h=−X=−Z while equation (65a) is identically satisfied.
Thus, h is calculable despite the lack of second order splitting and the continuing
indeterminacy of ac,s . In the sequel, one assumes the degenerate eigenvalues split at first
order. If they do not, the development described by Parker and Mote [11] is required.

The second order eigenfunction perturbation w(r, u) is

w= dc uc + ds us +wh +wp, (67)

wp
1 =−(r/(2p)1/2v)Jn+1 (vr)/Jn+1 (v) [(mcc + hac ) cos nu+(mcs + has ) sin nu], (68)

wp
2 =−

mr
2v

s
a

j=0, j$ n

Jj+1 (vr) [Bj cos ju+Cj sin ju], (69)

wp
3 =−

m2r
(32p)1/2v3Jn+1 (v)

[vrJn (vr)−2(n+1)Jn+1 (vr)] (ac cos nu+ as sin nu), (70)

wp =wp
1 +wp

2 +wp
3 , wh = s

a

j=0, j$ n

Jj (vr) [Ej cos ju+Fj sin ju]. (71, 72)
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Components wp
i are associated with the three inhomogeneities of equation (16a) resulting

from an expansion analogous to equation (47). The particular solution (71) is the essential
element allowing calculation of the Ej and Fj from equation (16b).

4.2.3. Third order perturbation

The solvability conditions for equations (17) and (11b) give

&m+v2gc
2n

v2gs
2n

v2ac

v2gs
2n

m−v2gc
2n

v2as

v2ac

v2as

0 '8 dc

ds

k/v29= 8 −m�uc, wp�− h�uc, v�− J	 (uc, s)
−m�us, wp�− h�us, v�− J	 (us, s)

−v2[1
2 �v, v�+ ac �uc, wp �+ as �us, wp�]9.

(73)

The operator in equation (73) is identical to that in equation (63), and the assumption of
first order eigenvalue splitting ensures its invertibility in the calculation of dc , ds , and k.

The third order eigenfunction perturbation s(r, u) is

s= ec uc + es us + sh + sp, (74)

sp
1 =−

r
(2p)1/2v

Jn+1 (vr)
Jn+1 (v)

[(mdc + hcc + kac ) cos nu+(mds + hcs + kas ) sin nu] , (75)

sp
2 =−

hr
2v

s
a

j=0, j$ n

Jj+1 (vr) [Bj cos ju+Cj sin ju], (76)

sp
3 =−

mnr
(32p)1/2v3Jn+1 (v)

[vrJn (vr)−2(n+1)Jn+1 (vr)] (ac cos nu+ as sin nu), (77)

sp
4 =−

mr
2v

s
a

j=0, j$ n

Jj+1 (vr) [Ej cos ju+Fj sin ju], (78)

sp
5 =−

mr
(32p)1/2v3Jn+1 (v)

[vrJn (vr)−2(n+1)Jn+1 (vr)]

× ((mcc + hac ) cos nu+(mcs + has ) sin nu), (79)

sp
6 =−

m2r
8v3 s

a

j=0, j$ n

[vrJj (vr)−2(j+1)Jj+1 (vr)] (Bj cos ju+Cj sin ju), (80)

sp
7 =

m3r(n+2)
(288p)1/2v4Jn+1 (v) $rJn (vr)+

r2v2 −4(n+1)
2v

Jn+1 (vr)%(ac cos nu+ as sin nu),

(81)

sp = sp
1 + sp

2 + sp
3 + sp

4 + sp
5 + sp

6 + sp
7 , (82)

sh = s
a

j=0, j$ n

Jj (vr) [Hj cos ju+Lj sin ju], (83)

where the Hj , Lj follow from equation (17b).
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4.2.4. Fourth order perturbation

From the solvability conditions for equations (18) and (11c),

&m+v2gc
2n

v2gs
2n

v2ac

v2gs
2n

m−v2gc
2n

v2as

v2ac

v2as

0 '8 ec

es

x/v29
= 8−m�uc, sp�− h�uc, w�− k�uc, v�− J	 (uc, t)

−m�us, sp�− h�us, w�− k�us, v�− J	 (us, t)
−v2[�v, w�+ ac�uc, sp�+ as�us, sp�] 9. (84)

5. EXAMPLE PROBLEMS

The numerical accuracy achievable by the presented method is illustrated by modeling
elliptical and rectangular domains with a circle.

5.1.  

An elliptical domain of eccentricity e=(1− b2/a2)1/2 is described by

R= a[(1− e2)/(1− e2 cos2 u)]1/2, (85)

where a and b are the semi-major and semi-minor axes, respectively (Figure 2). The average
radius R� (equation (3b)) and the Fourier coefficients of g(u) (equation (24)) are calculated
by quadrature. Though R� depends on a and e, g(u) depends only on e. For an ellipse,
gc

j =0 for j odd and gs
j =0 for all j. Eight non-trivial terms through gc

16 were used in the
calculations.

The dimensionless, fundamental, elliptical domain eigenvalue V00 a of equation (2)
evolves from the fundamental circular domain eigenvalue. (One identifies the perturbed
domain eigensolutions using subscripts mn denoting the number of nodal circles m and
nodal diameters n in the circular domain eigensolutions from which the perturbed
eigensolutions evolve.) Table 1 compares the fundamental eigenvalue predicted by
perturbation to the exact values computed by Daymond [13]. A maximum error of 0·32%
is calculated for eccentricities through e=0·9:b/a=0·4539. For the extreme eccentricity
e=0·9611:b/a=0·28, the perturbation results degrade substantially. Even without
comparison with a known solution, the degradation is evident by the poor convergence

Figure 2. Ellipse of eccentricity e=0·9 (b/a=0·4359). The circle is the base domain for the perturbation. The
radius of the circle equals the average radius of the ellipse.
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T 1
Comparison of the fundamental elliptical domain eigenvalue V00a computed using
perturbation to the exact solution of Daymond [13]. Perturbed eigenvalues (V01a)1,2 evolving
from the 0 nodal circle, 1 nodal diameter circular domain eigenvalues are also presented.
e=(1− b2/a2)1/2 denotes the eccentricity of the ellipse. Numbers in parentheses indicate the

order of perturbation.

e
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

0·4 0·5 0·6 0·7 0·8 0·9 0·9611

V00a Exact 2·5165 2·5968 2·7202 2·9215 3·2933 4·2151 6·2432
pert. (5) 2·5165 2·5968 2·7202 2·9215 3·2936 4·2287 7·2790
% Error 0·00 0·00 0·00 0·00 0·01 0·32 17

(V01a)1 Pert. (4) 3·9212 3·9864 4·0878 4·2559 4·5726 5·3318 —
(V01a)2 Pert. (4) 4·0956 4·2822 4·5646 5·0154 5·8259 7·7601 —

of the perturbation with increasing order. For e=0·9611, the asymptotic expansion (9)
for the fundamental frequency is

v̄2 =5·7831+0+5·1154−5·3966+4·7782+1·7258,

(V00 a)= v̄/R�a=1 =3·4650/0·47603 =7·2790.

In contrast, for e=0·9,

v̄2 =5·7831+0+1·6774−0·6083+0·3098−0·0005,

(V00 a)= v̄/R�a=1 =2·6761/0·63284 =4·2287.

The agreement between perturbation and the exact values is illustrated in Figure 3. Results
for perturbation of the one nodal diameter circular domain eigenvalue are also given in
Figure 3, where the exact values were obtained by optically scanning Figure 1 of Troesch

Figure 3. Elliptical domain eigenvalues. The subscript mn denotes the number of nodal circles (m) and nodal
diameters (n) in the circular domain (e=0) eigenvalue. a is the semi-major axis length of the ellipse. The solid
lines are determined from the exact solutions of Daymond [13] and Troesch and Troesch [14]. The symbols are
values predicted by perturbation.
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Figure 4. Rectangle of aspect ratio j=0·9. The approximate rectangle (dotted line) is a 10 term Fourier
approximation of the rectangle. The circle is the base domain of the perturbation. The radius of the circle equals
the average radius of the rectangle.

and Troesch [14] and digitizing points through e=0·9. Differences between the results so
obtained and the perturbation values are all less than 3%, which is approximately the
precision of the scanned and digitized results. Tabular results for the (V01 a)1,2 eigenvalues
are presented in Table 1.

5.2.  

Consider the rectangular domain of dimension 2a×2b where j= b/aE 1 (Figure 4).
The average radius R� and the Fourier coefficients of g(u) are calculated by quadrature.

T 2

Comparison of the fundamental rectangular domain eigenvalue computed using perturbation
to exact values. j= b/a denotes the aspect ratio of the rectangle. The numbers in parentheses

indicate the order of perturbation.

j
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

V00a 1 0·9 0·8 0·7 0·6 0·5 0·4 0·3

Exact 2·2214 2·3481 2·5145 2·7391 3·0531 3·5124 4·2295 5·4665

Pert. (5) 2·2243 2·3511 2·5183 2·7460 3·0665 3·5597 4·4293 6·6599
% Error 0·13 0·13 0·15 0·25 0·44 1·3 4·7 22

Pert. (4) 2·2193 2·3455 2·5109 2·7325 3·0409 3·4797 4·1413 4·9888
% Error −0·10 −0·11 −0·14 −0·24 −0·40 −0·93 −2·1 −8·7

Pert. (3) 2·2127 2·3394 2·5027 2·7230 3·0278 3·4672 4·0995 4·9403
% Error −0·40 −0·37 −0·47 −0·59 −0·83 −1·3 −3·1 −9·6

Pert· (2) 2·2479 2·3753 2·5430 2·7700 3·0923 3·5830 4·4038 5·9903
% Error 1·2 1·2 1·1 1·1 1·3 2·0 4·1 9·6

Pert. (1) 2·1430 2·2608 2·4049 2·5859 2·8209 3·1400 3·6013 4·3353
% Error −3·5 −3·7 −4·4 −5·6 −7·6 −11 −15 −21
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T 3

Comparison of the rectangular domain eigenvalues Vmna computed using perturbation to exact
values. j= b/aE 1 is the rectangle aspect ratio. m and n are the numbers of nodal circles
and nodal diameters, respectively, in the circular domain eigenfunction from which the

corresponding rectangular domain eigenfunction evolves.

m, n
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

j (0, 0) (0, 1)1 (0, 1)2 (0, 2)2 (0, 2)1 (1, 0) (0, 3)1 (0, 3)2

1 Exact 2·2214 3·5124 3·5124 4·4429 4·9673 4·9673 5·6636 5·6636
Pert. 2·2243 3·5081 3·5123 4·4322 4·9679 4·9656 5·7064 5·7071

% Err. 0·13 −0·12 0·00 −0·24 0·01 −0·03 0·76 0·76

0·95 Exact 2·2806 3·5502 3·6610 4·5613 4·9941 5·2032 5·7569 5·8716
Pert. 2·2836 3·5442 3·6553 4·5499 5·0136 5·2027 5·8693 5·8873

% Err. 0·13 −0·17 −0·16 −0·25 0·39 0·00 2·0 0·27

0·9 Exact 2·3481 3·5939 3·8278 4·6962 5·0252 5·4665 5·8644 6·1062
Pert. 2·3511 3·5879 3·8218 4·6831 4·9148 5·5454 6·1071 6·1390

% Err. 0·13 −0·17 −0·16 −0·28 −2·2 1·4 4·1 0·54

0·8 Exact 2·5145 3·7047 4·2295 5·0290 5·1051 6·0963 6·1342 6·6759
Pert. 2·5183 3·6984 4·2219 5·0063 5·0071 3·9446 6·6318 6·7169

% Err. 0·15 −0·17 −0·17 −0·45 −1·9 −35 8·1 0·61

0·7 Exact 2·7391 3·8607 4·7549 5·4783 5·2194 6·9128 6·5076 7·4289
Pert. 2·7460 3·8493 4·7478 5·4315 8·7571 imag 6·1737 7·0269

% Err. 0·25 −0·29 −0·15 −0·85 68 — −5·1 −5·4

R� depends on a and j, but g(u) depends only on j. Also, gc
j =0 for j odd and gs

j =0 for
all j. Ten non-trivial terms through gc

20 were used in the calculations (Figure 4).
Table 2 compares the fundamental eigenvalue V00 a from perturbation to the exact value

for 1e je 0·3. Comparisons are shown for first–fifth order perturbation approximations.
For a fifth order perturbation approximation, errors in the fundamental frequency are less
than 0·5% for je 0·6, 1·3% for j=0·5, and 4·7% for j=0·4. For j=0·3, the error is
22·0% and perturbation is not effective. The behavior of the asymptotic approximation
(vertical column of Table 2) reveals a large expected error even in the absence of a known
solution.

Substantial improvement in the predicted fundamental eigenvalue results when the
perturbation is extended from first to second order. The accuracy obtainable from a second
order perturbation is significant because the closed form expression (33) gives h for an
arbitrary shape perturbation. Improved accuracies are achieved with third order and fourth
order perturbations. For rectangular domains, fifth order perturbation affords no increase
in accuracy. Though the accuracy achieved using fourth or fifth order perturbation may
not be needed, the higher order perturbations develop confidence in the convergence of the
predicted eigensolutions through the decreased magnitude of the higher order terms.

Comparisons of perturbation predictions and exact eigenvalues are shown in Table 3
for rectangular domains. For square domains, all predicted values differ from the exact
values by less than 1%, and the agreement is also excellent for j=0·95 and j=0·9. The
lowest four eigenvalues provide excellent estimates for j=0·7, 0·8, as shown in Figure 5.
Where the predicted and exact values differed substantially, the failure of the higher order
perturbations to approach zero in the asymptotic expansion is evident.
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Figure 5. Eigenvalues of a rectangular domain with aspect ratio j= b/a. Solid curves denote exact values.
Symbols denote values predicted by perturbation.

It is interesting that two distinct circular domain eigenvalues can merge to form a
degenerate eigenvalue pair on a square domain. For instance, the (m, n)= (1, 0) circular
domain eigenvalue and one of the degenerate (m, n)= (0, 2) circular domain eigenvalues
merge to form the degenerate eigenvalue pair Va=4·9673 in the square domain. In
contrast, the degenerate eigenvalue pairs Va=3·5124 and Va=5·6636 in the square
domain evolve from the degenerate eigenvalue pairs (m, n)= (0, 1) and (m, n)= (0, 3) in
the circular domain. Perturbation predicts the splitting of the degenerate square domain
eigenvalues (Figure 5).

6. DISCUSSION

The presented boundary perturbation method applies for general boundary conditions
of the form of equations (7b, c). For annular domains, the Bessel function Yn (vmn r) is
included in equations (20, 21); particular solutions associated with this additional term are
almost identical to those associated with Jn (vmn r) [10]. If different unperturbed boundary
conditions are considered, the unperturbed eigenfunctions (20, 21) do not change form;
only the normalization coefficients change. Consequently, the form of the right side of
equation (15a) is unchanged, and the particular solutions (29, 60) apply except for a change
in their leading coefficients. Different first order boundary condition perturbations C� and
C
 change only the values of the coefficients Bj and Cj in equations (30, 61). Instead of
equation (15b), these coefficients are determined by the general perturbed boundary
condition (7c),

[vh + bo vh
r ]1P =−C
 u−[vp + bo vp

r ]1P . (86)



. .   . . , .406

Calculation of Bj and Cj is always possible by Fourier expansion of equation (86). Thus,
the forms of v in equations (28) and (59) are unaffected by changes in either the perturbed
or unperturbed boundary operators. As a result, only coefficients of the particular
solutions (35, 71) change for different boundary conditions. This reasoning extends to
higher order perturbations, and consequently the presented particular solutions admit
exact eigensolution perturbations for general boundary condition perturbations.

Boundary condition perturbation offers an attractive combination of analytical and
computational advantages. The closed form expressions show explicit dependence of the
eigenvalues on parameters. The simplicity of these expressions for arbitrary circumferential
distribution of the perturbation allows ready assessment of qualitative and quantitative
eigensolution changes induced by a given asymmetry distribution. The simplicity also
permits convenient use of the eigensolutions in applications such as inverse problems,
forced and transient response calculations, and system identification. Kac posed an inverse
problem: ‘Can one hear the shape of a drum?’ [15]. Use of the general formulae for the
eigensolutions in terms of the Fourier coefficients of the boundary asymmetry and an
optimization procedure could address this problem. Derivation, use, and verification of
the results can be automated using computer algbera software, thereby minimizing
programming errors. Boundary condition perturbation can handle more general
asymmetries than Ritz–Galerkin analyses because no admissible functions are required.
The magnitude of asymmetry for which accurate solutions are obtainable is remarkably
large for a perturbation solution. Substantial errors are possible, however, as seen in the
higher eigenvalues for rectangular domains. Accuracy limitations increase as higher
eigenvalues are considered.

7. CONCLUSIONS

(1) Eigensolutions of the wave equation with perturbations of the boundary conditions
are derived by exact solution of the sequence of perturbation problems up to fifth order.
Perturbations of the domain from circular and variation of boundary condition parameters
along the boundary curves are included in the class of perturbations for which the method
applies. Exactness of the perturbation solutions means no approximation is introduced
other than truncation of the asymptotic series equations (9, 10).

(2) The derived solution offers a combination of analytical and computational
advantages: exact perturbation through fifth order yields excellent accuracy for
perturbations of substantial magnitude (such as the elliptical and rectangular domain
perturbation examples); Fourier representation of the perturbations allows treatment of
general continuous or discontinuous asymmetries; algebraic simplicity of the results
permits convenient use of the eigensolutions in applications such as inverse and forced
response problems; results are easily derived and verified using computer algebra software.

(3) Rules governing splitting of the degenerate unperturbed eigenvalues are derived at
both first and second orders of perturbation. These rules take simple algebraic forms in
terms of the Fourier coefficients of a general asymmetry. The rule for first order eigenvalue
splitting is such that it can be applied by inspection.
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